
 1

Appendix A. Updates to the USURP User's Manual

(Last revision: November 2, 2006 for version 2.36)

This document serves as an appendix to “User’s Manual for USURP: Unique Surfaces
Using Ranked Polygons, Version 2.32,” and contains documentation written subsequent
to June 30, 2006 and for versions of the source code subsequent to version 2.32.

Contents:

1. Command Line Functionality Added to USURP version 2.33 (OVERFLOW users)
2. Input File Formats for “Generic” Input
3. Additional Compiler Notes Concerning Linux and the Portland Group Compiler
4. Additional Compiler Notes
5. Using USURP with the DPLR Flow Solver

Section A1. Command Line Functionality Added to USURP version 2.33
(OVERFLOW users)

The command line option --use-map can be used to generate a grid.i.triq given a grid.i.tri
file and a matching usurp.map file without having to repeat the polygon clipping or
triangulation steps in USURP. The procedure to use this capability is as follows:

a. Run "usurp --full-surface --ignore-solution < mixsur.i" in order to generate the grid.i.tri
file and matching usurp.map.

b. Given a new q.save file, run "usurp --use-map < mixsur.i" in order to generate the
grid.i.triq file.

Alternatively, --watertight can be used in step “a” in place of --full-surface.

Section A2. Input File Formats for “Generic” Input

Users of other codes in which all surface points may be considered active or in which the
i-blank information is stored at cell centers can convert their data to a generic format for
input into USURP. In these cases, the following files are required to be in the working
directory: generic.bc, generic.grd, and in some cases, generic.ib. These files are described
below.

a. The generic.bc file is an ASCII file containing a list of the solid surfaces. Each line
takes the following form:

 block, i1, i2, j1, j2, k1, k2

 2

where "block" is the block number, "i1,i2" is the grid point range of the surface in the i-
direction, "j1,j2" is the grid point range in the j-direction, and "k1-k2" is the grid point
range in the k-direction. Grid point ranges are provided using a vertex-based numbering
system. For example, a j-min surface in the 4th block of a grid system might be specified
as

 4, 1,33, 1,1, 1,17

Currently, there is no provision to label components (i.e. there is no provision to group
surfaces) under the generic input file format, which effects only the use of the --disjoin
command line option.

b. The generic.grd file must contain the grid in ASCII, PLOT3D, multiblock format,
which is specified in detail below. As the grid is in ASCII format, the grid coordinates
may be expressed using single or double precision. The file should be written using
commands equivalent to these:

open(unit=3,file=”generic.grd”,form=”formatted”)
write(3,*)nb
write(3,*)(ni(n),nj(n),nk(n),n=1,nb)
do n = 1,nb
 write(3,*)(((x(i,j,k,n),i=1,ni(n)),j=1,nj(n)),k=1,nk(n)), &
 (((y(i,j,k,n),i=1,ni(n)),j=1,nj(n)),k=1,nk(n)), &
 (((z(i,j,k,n),i=1,ni(n)),j=1,nj(n)),k=1,nk(n))
end do
close(3)

c. The generic.ib file provides the cell-centered i-blank values for each computational
cell. If the generic.ib file exists, USURP interprets the i-blank values to have the
following meanings:

iblank = 1: active or field cells
iblank < 0: fringe or recipient cells
iblank = 101: orphan cells
iblank = 0: hole or “out” cells

Note that all i-blank values less than zero are considered to be equivalent. If generic.ib
does not exist, the i-blank value is assumed to be equal to 1 for all cells.

The generic.ib file should be written using commands equivalent to these:

open(unit=3,file=”generic.ib”,form=”formatted”)
do n = 1,nb
 write(3,*)(((ib(i,j,k,n),i=2,ni(n)),j=2,nj(n)),k=2,nk(n))
end do

 3

close(3)

Note that the “ib” values are read as integers and that the index range (e.g. 2:ni(n))
includes only the interior cells (one less than the number of vertices in each direction).

Section A3. Additional Compiler Notes Concerning Linux and the Portland Group
Compiler

The compilation of “Triangle” (version 1.6) on linux machines (when the –DLINUX CPP
flag is required) requires the use of the fpu_control.h library. That library uses in- line
assembly commands. When Portland Group compilers are used, the in- line assembly
feature requires version 6.1 of pgcc or later to compile. If this version is not available,
gcc can be used instead. On non- linux machines, the –DLINUX flag should not be used.

Section A4. Additional Compiler Notes

makemake.pl is a Perl script that can be used to regenerate the Makefile dependencies.
Therefore, changes should be made to makemake.pl or Make.sys, not to Makefile itself.

The Makefile (via Make.sys) has been set-up to handle compilation using the Portland
Group compilers (pgf90 and pgcc under Linux), XL Fortran for AIX (xlf90 and xlc under
AIX), Sun f90, Intel ifort, SGI and Lahey/Fujitsu Fortran 95 (lf95), and g95. Other
possibilities exist in Make.sys but are commented out because they have not been tested
with USURP.

Section A5. Using USURP with the DPLR Flow Solver

Beginning with version 2.36, USURP is capable of reading DPLR input files. The basic
usage in this case is simply “usurp < filename”, where “filename” is the name of the
DPLR flow solver input file.

USURP has been written to handle several (currently 8) different CFD working
environments (e.g. OVERFLOW, UNCLE-M, CFD-SHIP, etc.). Generally, each working
environment is characterized by the existence of a particular file (e.g. “grid.in” for
OVERFLOW, “cfd_ship.nml” for CFD-SHIP, etc.). Because DPLR has no such
mandatory file names, USURP defaults to reading DPLR input when it fails to identify
any of the other supported environments.

Required input to USURP for DPLR users consists of the DPLR (flow solver) input file
and the associated grid file (i.e. the grid file identified in the flow solver input file).
USURP supports all three formats for the parallel archive grid file that DPLR supports,
namely native unformatted (type 1), XDR binary (type 11), and ASCII formatted
(type 21).

 4

In order to use the XDR binary format, USURP must be linked to the FXDR library
during compilation. The FXDR library was written by David W. Pierce and can be
obtained from http://meteora.ucsd.edu/~pierce/fxdr_home_page.html. The user is
responsible for downloading and compiling the FXDR library. USURP will automatically
link the library if the FXDR_HOME environment variable has been set to point to the
FXDR archive (.a) file.

Most USURP command line options are available to DPLR users. Note, however, that
USURP serves only as a pre-processor to DPLR. That is, USURP will generate the panel
weights (panel_weights.dat) for use in postflow, but no stand-alone integration of the
dependent variables is conducted within USURP.

